

Quantitative analysis of digital images: supporting the pathologist

Ferenc Szipőcs
3DHISTECH - Sysmex

A good digital pathology solution

Scanner

- Fast
- Excellent image quality
- Compact, BF and FL in one package

Server

- Instant availability on LAN, WAN
- Management and Organization of slides
- Supports pathology workflow
- Integrates with HIS/LIS system
- Pathology workstation
- Image analysis
 - Quantification
 - Report

The Pathology workstation

Quantitative Microscopy

Aims:

- To make pathological diagnosis more objective and comparable by measurements
- To bring dedicated solutions to pathologists' desks
- To reduce diagnostic procedure

The Quantification Applications

IHC

FISH

The Digital Case

Case Study:

- ROI definition on brightfield sample
- Slide rotation and alignment
- Similar region of interest
- Comparable stains and measurements

Image Analysis, Quantification Solutions

- HistoQuant
 - General, Versatile solution
- NuclearQuant
 - Nuclei stains
- MembraneQuant
 - Membrane stains
- FISHQuant
 - FISH stains
- 3D reconstruction

Easy 3-Step Workflow

I. Load Define ROI(s) for calibration

Ia. Configure Calibrate the solution on selected training set(s)

II. Run the analysis (in batch mode)

III. Review Browse the result (in Viewer or Gallery)

- Sophisticated solution for special problems
- Multiple uses

HistoQuant for Hematology

Blood smear analysis

Image Cytometry

HistoQuant for Fluorescence

Fluorescence investigation on original, or enhanced color slide

NuclearQuant

Aims:

- To quantify nuclear markers on immunostained samples

- To give a useful tool to determine the Er, Pr status

About the algorithm

Color Deconvolution adjusts the software to the intensity of the applied stain

NuclearQuant in practice

Score settings:

NuclearQuant example

MembraneQuant

Aims:

- To quantify membrane immunostain
- To give a useful tool to determine eg. HER2 status

About the algorithm

- Color deconvolution
- Intensity based topographical analysis

Final review

Export data

- .CSV file export, Office compatible
- Region specific measurements:
 - Field area
 - Number of detected objects
 - Field score, H-score
- Object specific measurement:
 - Area, perimeter, shape factor
 - Intensity parameters
 - Score
 - Etc.

	n 10301_ER							
e rta	actor					160		
AISP File	: ER12(142024_06	112012)				200		
ate Of N	/ 2012.11.23 9:10					140		
						120		
rea	Area							
eri	Perimeter					100		
F	Shape Factor					80		
DBrown	I CD Brown Inten	sity						
DBlueIn	t CD Blue Intensit	ty				60		
core	Score					40		
						200		
rea	Peri	SF	CDBrowni	CDBlueInt	Score	20		
32,1635	20,9512	0,9208	97,3731	241,1529	3+	0		
42,0017	23,854	0,9276	93,2677	250,0656	3+		1	2
29,7309	20,0776	0,9268	79,2545	243,3545	3+			

Case Report

Fluorescence Quantification Problems

- Small signals
- Signal overlapping
- Digital still images sampling bias
- Random colocalization
- Truncation effect

Area sensor in Fluorescence application

Extended focus

Z-stack scanning

FISHQuant

- Cell nuclei detection in DAPI channel
 - Morphological characteristics of the cell's nuclei
- FISH spot detection threshold
 - Intensity amplification

FISHQuant Module

FISHQuant classification gallery

3D Reconstruction and image analysis

Thank you for your attention!

Questions?

Please visit the Sysmex booth for live scans and demos!

http://www.3dhistech.com

http://pathonet.org

http://slides.3dhistech.com/casecenter

http://www.sysmex-lifescience.com/

http://scanner-contest.charite.de/en/